organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Dimethyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5*H*)-one

R. Archana,^a E. Yamuna,^b K. J. Rajendra Prasad,^b A. Thiruvalluvar^a* and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 5 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 8.5.

In the title molecule, $C_{15}H_{17}NO$, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure, intermolecular $C-H\cdots O$ hydrogen bonds are found.

Related literature

For the importance of the indole nucleus, see: Satoshi & Tominari (2001). For the synthesis of fused cyclohept[b]indole derivatives, see: Butin *et al.* (2010); Fujimori & Yamane (1978); Wahlström *et al.* (2007). For heteroannulated cyclohept[b]indole derivatives, see: Kavitha & Prasad (1999, 2001). For crystallographic studies of cyclohept[b]indoles, see: Sridharan *et al.* (2008*a*,*b*, 2009); Yamuna *et al.* (2010).

Experimental

Crystal data $C_{15}H_{17}NO$ $M_r = 227.30$ Orthorhombic, $Pca2_1$ a = 15.5889 (3) Å b = 10.5707 (2) Å c = 7.5388 (2) Å

 $V = 1242.29 (5) Å^{3}$ Z = 4Cu K\alpha radiation $\mu = 0.59 \text{ mm}^{-1}$ T = 295 K $0.49 \times 0.32 \times 0.12 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Ruby	
Gemini diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO; Oxford	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.045 & 1 \text{ restraint} \\ wR(F^2) = 0.129 & \text{H-atom parameters constrained} \\ S = 1.09 & \Delta\rho_{\max} = 0.17 \text{ e } \text{\AA}^{-3} \\ 1327 \text{ reflections} & \Delta\rho_{\min} = -0.16 \text{ e } \text{\AA}^{-3} \end{array}$

Diffraction, 2010)

1327 measured reflections 1327 independent reflections 1285 reflections with $I > 2\sigma(I)$

 $T_{\min} = 0.887, T_{\max} = 1.000$

Table 1 Hydrogen-bond geometry (Å, °).

 $\frac{1}{D-H\cdots A} \qquad D-H \qquad H\cdots$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10B\cdots O6^{i}$	0.97	2.59	3.550 (3)	168

Symmetry code: (i) $x + \frac{1}{2}, -y + 1, z$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2724).

References

- Butin, A. V., Kostyukova, N. O., Tsiunchik, F. A., Lysenko, S. A. & Trushkov, I. V. (2010). Chem. Heterocycl. Compd, 46, 117–119.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fujimori, K. & Yamane, K. (1978). Bull. Chem. Soc. Jpn, 51, 3579-3581.
- Kavitha, C. & Prasad, K. J. R. (1999). Heterocycl. Commun. 5, 481-488.
- Kavitha, C. & Prasad, K. J. R. (2001). Indian J. Chem. Sect. B, 40, 601-602.
- Oxford Diffraction (2010). *CrysAlis PRO*. Oxford Diffraction Ltd, Abingdon, England.
- Satoshi, H. & Tominari, C. (2001). Nat. Prod. Rep. 18, 66-87.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Butcher, R. J. (2008a). Acta Cryst. E64, 01697.
- Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008b). Acta Cryst. E64, o1207.
- Sridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, 0698.
- Wahlström, N., Slatt, J., Stensland, B., Ertan, A., Bergman, J. & Janosik, T. (2007). J. Org. Chem. 72, 5886–5889.
- Yamuna, E., Sridharan, M., Prasad, K. J. R. & Zeller, M. (2010). J. Chem. Crystallogr. 40, 402–411.

supplementary materials

Acta Cryst. (2010). E66, o2882 [doi:10.1107/S1600536810041772]

2,5-Dimethyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one

R. Archana, E. Yamuna, K. J. Rajendra Prasad, A. Thiruvalluvar and R. J. Butcher

Comment

Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[*b*]indole derivatives have been synthesized (Butin *et al.*, 2010); Fujimori & Yamane, 1978); Wahlström *et al.*, 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[*b*]indol-6(*5H*)-one was used as a synthon to derive various heteroannulated cyclohept[*b*]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[*b*]indoles from our laboratory (Sridharan *et al.*, 2008*a*,*b*, 2009); Yamuna *et al.*, 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, $C_{15}H_{17}NO$, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).

Experimental

To a solution of 2-methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.213 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na₂SO₄ and evaporation yielded the title compound (0.204 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.

Refinement

Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The absolute structure in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and $U_{iso}(H) = 1.2 - 1.5$ times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The molecular packing of the title compound, viewed down the *c* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

2,5-Dimethyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one

Crystal data

C ₁₅ H ₁₇ NO	$D_{\rm x} = 1.215 \ {\rm Mg \ m}^{-3}$
$M_r = 227.30$	Melting point: 346 K
Orthorhombic, <i>Pca</i> 2 ₁	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2c -2ac	Cell parameters from 2494 reflections
a = 15.5889 (3) Å	$\theta = 5.1 - 73.7^{\circ}$
<i>b</i> = 10.5707 (2) Å	$\mu = 0.59 \text{ mm}^{-1}$
c = 7.5388 (2) Å	T = 295 K
$V = 1242.29 (5) \text{ Å}^3$	Plate, pale yellow-orange
Z = 4	$0.49 \times 0.32 \times 0.12 \text{ mm}$
F(000) = 488	

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	1327 independent reflections
Radiation source: Enhance (Cu) X-ray Source	1285 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.0000$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 73.8^{\circ}, \theta_{\text{min}} = 5.1^{\circ}$
ω scans	$h = 0 \rightarrow 19$
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)	$k = 0 \rightarrow 13$
$T_{\min} = 0.887, \ T_{\max} = 1.000$	$l = 0 \rightarrow 9$
1327 measured reflections	

Refinement

Least-squares matrix: fullSecondary atom site location: difference Fourier map $R[F^2 > 2\sigma(F^2)] = 0.045$ Hydrogen site location: inferred from neighbouring sites	Refinement on F^2	Primary atom site location: structure-invariant direct methods
$R[F^2 > 2\sigma(F^2)] = 0.045$ Hydrogen site location: inferred from neighbouring sites	Least-squares matrix: full	Secondary atom site location: difference Fourier map
	$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.129$ H-atom parameters constrained	$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.09 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.097P)^{2} + 0.041P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	S = 1.09	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2 + 0.041P]$ where $P = (F_o^2 + 2F_c^2)/3$
1327 reflections $(\Delta/\sigma)_{max} = 0.001$	1327 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
156 parameters $\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$	156 parameters	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$

1 restraint

 $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O6	0.18943 (11)	0.4617 (2)	0.5238 (5)	0.1003 (11)
N5	0.29328 (12)	0.68004 (18)	0.4471 (3)	0.0561 (6)
C1	0.51734 (15)	0.75136 (19)	0.4664 (3)	0.0534 (6)
C2	0.52228 (19)	0.8760 (2)	0.4100 (4)	0.0667 (8)
C3	0.4462 (2)	0.9404 (2)	0.3639 (5)	0.0789 (9)
C4	0.3667 (2)	0.8856 (2)	0.3734 (4)	0.0738 (9)
C4A	0.36199 (15)	0.7584 (2)	0.4294 (3)	0.0534 (6)
C5	0.20448 (16)	0.7199 (3)	0.4212 (5)	0.0757 (9)
C5A	0.32271 (11)	0.56233 (19)	0.5029 (3)	0.0478 (5)
C6	0.26683 (13)	0.4538 (2)	0.5353 (3)	0.0573 (6)
C7	0.30755 (16)	0.3306 (2)	0.5819 (5)	0.0711 (9)
C8	0.37596 (17)	0.2890 (3)	0.4485 (6)	0.0817 (12)
С9	0.46482 (15)	0.3391 (2)	0.4821 (4)	0.0614 (7)
C10	0.46951 (13)	0.46270 (19)	0.5847 (4)	0.0536 (6)
C10A	0.41137 (11)	0.56610 (16)	0.5207 (3)	0.0434 (5)
C10B	0.43718 (13)	0.69124 (18)	0.4753 (3)	0.0469 (5)
C21	0.6075 (3)	0.9427 (3)	0.3943 (6)	0.0945 (13)
H1	0.56686	0.70786	0.49820	0.0640*
H3	0.45022	1.02372	0.32532	0.0947*
H4	0.31752	0.93066	0.34395	0.0886*
H5A	0.20287	0.79065	0.34142	0.1136*
H5B	0.18019	0.74410	0.53321	0.1136*
H5C	0.17200	0.65120	0.37201	0.1136*
H7A	0.26345	0.26605	0.58845	0.0853*
H7B	0.33362	0.33765	0.69835	0.0853*
H8A	0.37840	0.19726	0.44833	0.0980*
H8B	0.35808	0.31561	0.33110	0.0980*
H9A	0.49307	0.35096	0.36871	0.0737*
H9B	0.49689	0.27543	0.54691	0.0737*
H10A	0.45605	0.44540	0.70798	0.0643*
H10B	0.52813	0.49334	0.58032	0.0643*
H21A	0.65287	0.88480	0.42275	0.1418*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H21B	0.60900	1.01291	0.47511	0.1418*
H21C	0.61481	0.97296	0.27521	0.1418*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
06	0.0441 (8)	0.0967 (14)	0.160 (3)	-0.0048 (8)	0.0028 (14)	0.0057 (18)
N5	0.0518 (9)	0.0564 (10)	0.0600 (11)	0.0183 (8)	-0.0059 (8)	-0.0087 (9)
C1	0.0627 (11)	0.0451 (9)	0.0524 (12)	-0.0035 (8)	0.0046 (9)	-0.0064 (8)
C2	0.0934 (17)	0.0432 (10)	0.0636 (14)	-0.0093 (10)	0.0126 (13)	-0.0110 (11)
C3	0.122 (2)	0.0374 (9)	0.0772 (18)	-0.0010 (12)	0.0128 (18)	-0.0027 (12)
C4	0.1000 (19)	0.0475 (12)	0.0740 (17)	0.0272 (12)	-0.0020 (14)	-0.0022 (12)
C4A	0.0629 (12)	0.0465 (10)	0.0509 (10)	0.0129 (8)	0.0003 (9)	-0.0069 (9)
C5	0.0588 (13)	0.0851 (17)	0.0833 (17)	0.0332 (13)	-0.0132 (13)	-0.0156 (16)
C5A	0.0438 (9)	0.0511 (10)	0.0485 (9)	0.0080 (7)	0.0005 (8)	-0.0059 (9)
C6	0.0440 (9)	0.0653 (11)	0.0625 (12)	-0.0037 (8)	0.0062 (9)	-0.0094 (11)
C7	0.0565 (11)	0.0587 (12)	0.098 (2)	-0.0114 (10)	0.0112 (13)	0.0050 (15)
C8	0.0641 (13)	0.0681 (14)	0.113 (3)	0.0050 (11)	-0.0031 (16)	-0.0378 (19)
C9	0.0596 (11)	0.0469 (10)	0.0777 (15)	0.0111 (8)	0.0124 (11)	0.0058 (11)
C10	0.0425 (8)	0.0492 (10)	0.0691 (14)	0.0037 (7)	-0.0056 (9)	0.0103 (10)
C10A	0.0429 (8)	0.0430 (9)	0.0444 (9)	0.0042 (7)	-0.0001 (8)	-0.0025 (8)
C10B	0.0567 (10)	0.0404 (9)	0.0436 (9)	0.0062 (7)	0.0024 (8)	-0.0033 (8)
C21	0.120 (3)	0.0646 (15)	0.099 (2)	-0.0374 (17)	0.018 (2)	-0.0114 (17)

Geometric parameters (Å, °)

O6—C6	1.213 (3)	C10A-C10B	1.424 (3)
N5—C4A	1.361 (3)	C1—H1	0.9300
N5—C5	1.460 (3)	С3—Н3	0.9300
N5—C5A	1.391 (3)	C4—H4	0.9300
C1—C2	1.387 (3)	C5—H5A	0.9600
C1—C10B	1.404 (3)	С5—Н5В	0.9600
C2—C3	1.411 (4)	С5—Н5С	0.9600
C2—C21	1.509 (5)	С7—Н7А	0.9700
C3—C4	1.370 (4)	С7—Н7В	0.9700
C4—C4A	1.411 (3)	C8—H8A	0.9700
C4A—C10B	1.413 (3)	C8—H8B	0.9700
C5A—C6	1.461 (3)	С9—Н9А	0.9700
C5A—C10A	1.389 (2)	С9—Н9В	0.9700
C6—C7	1.491 (3)	C10—H10A	0.9700
С7—С8	1.530 (5)	C10—H10B	0.9700
C8—C9	1.505 (4)	C21—H21A	0.9600
C9—C10	1.520 (3)	C21—H21B	0.9600
C10—C10A	1.500 (3)	C21—H21C	0.9600
O6…N5	2.878 (3)	H1…O6 ^{viii}	2.6300
O6…C5	2.847 (4)	H3…H8A ^{vi}	2.3400
O6…H5C	2.3200	H4…C5	2.9000
O6…H7B ⁱ	2.8100	Н4…Н5А	2.3200

$O6 - H1^{Hi}$ 2.6300H5A -··H42.3200 $O6 - ··H10B^{Hi}$ 2.5900H5B -··C4^{Hi}3.0600 $N5 - O6$ 2.878 (3)H5B -··C4A^{Hi}3.0600 $C5 -··C5A^{i}$ 2.878 (3)H5B -··C4A^{Hi}3.0600 $C5 -··C5A^{i}$ 2.847 (4)H5C -··C62.8400 $C5 -··C5A^{i}$ 3.591 (4)H5C -··C5A^{i}2.9400 $C1 -··H10A^{iv}$ 2.8800H5C -··C10A^{i}3.0800 $C1 -··H10A^{iv}$ 2.8800H7B -··C10A3.0200 $C3 -··H2B^{v}$ 3.0900H7B -··C10A3.0200 $C3 -··H2B^{vi}$ 3.0600H7B -··C10A3.0200 $C4 -··H5B^{i}$ 3.0600H7B -··C10A2.2000 $C4 -··H5B^{i}$ 3.0600H8A -··C3^{iv}2.9800 $C4 -··H5B^{i}$ 3.0600H8A -··C3^{iv}2.9800 $C4 -··H5B^{i}$ 3.0600H8B -··C5A2.9600 $C5 -··H4$ 2.9000H8B -·C5A2.9600 $C5 -··H4$ 2.9000H8B -·C6A^{ii}2.8800 $C5 -··H5C^{ii}$ 2.9400H9A -··C10^{iv}2.9700 $C1 -··H10$ 3.0700H10A -··C72.7800 $C10 -··H7B$ 2.6400H10A -··C72.7800 $C10 -··H7B$ 3.0200H10A -··C12.8800 $C10 -··H7B$ 3.0200H10A -··C108^{vii}2.9900 $C10 -··H7B$ 3.0200H10A -··C108^{vii}2.9900 $C10 -··H7B$ 3.0200H10A -··C108^{vii}2.9900 $C10 -··H7B$ 3.0200H10A -··C108^{vii}2.9900 <td< th=""></td<>
O6H10B ⁱⁱⁱ 2.5900 H5BC4 ⁱⁱ 3.0600 N5O6 2.878 (3) H5BC4A ⁱⁱ 3.0600 C5O6 2.847 (4) H5CO6 2.3200 C5C5A ⁱ 3.591 (4) H5CC6 2.8400 C5C5A ⁱ 3.591 (4) H5CC6A ⁱ 2.9400 C1H10A ^{iv} 2.8800 H5CC10A ⁱ 3.0800 C1H10B 2.8600 H7BC10 2.6400 C3H21B ^v 3.0900 H7BC10A 3.0200 C3H21B ^v 3.0600 H7BC10A 3.0200 C4H5B ⁱ 3.0600 H7BC10A 2.200 C4H5B ⁱ 3.0600 H8AC3 ^{ik} 2.9800 C4H5B ⁱ 3.0600 H8AC3 ^{ik} 2.9600 C5AH3B ⁱ 3.0600 H8BC5A 2.9600 C5AH3C ⁱⁱ 2.9400 H9AC10 ^{iv} 2.9700 C6H5C 2.8400 H9AH10A ^{iv} 2.9700 C10H7B 2.6400 H10AC1 ^{vii} 2.8800 C10H7B 3.0200
N5-··O6 $2.878 (3)$ H5B···C4A ⁱⁱ 3.0600 C5···O5 $2.847 (4)$ H5C···O6 2.3200 C5···C5A ⁱ $3.591 (4)$ H5C···C6A ⁱ 2.8400 C5A···C5I ⁱ $3.591 (4)$ H5C···C6A ⁱ 2.9400 C1···H10A ^{iv} 2.8800 H5C···C10A ⁱ 3.0800 C1···H10B 2.8600 H7B···C10A 3.0200 C3···H21B ^v 3.0900 H7B···C10A 3.0200 C3···H21B ^v 2.9800 H7B···C10A 3.0200 C4···H5B ⁱ 3.0600 H7B···O6 ⁱⁱ 2.8100 C4···H5B ⁱ 3.0600 H8A···C3 ^{ix} 2.9800 C4···H5B ⁱ 3.0600 H8A···C3 ^{ix} 2.9600 C5···H4 2.9000 H8B···C5A 2.9600 C5A···H8B 2.9600 H8B···O6 ⁱ 2.8800 C5A···H5C ⁱⁱ 2.9400 H9A···C10 ^{iv} 2.9700 C6···H5C 2.8400 H9A···C10 ^{iv} 2.9700 C10···H7B 2.6400 H10A···C7 2.8800 C10···H7B 2.9700 H10A···C10 ^{vii} 2.8800 C10···H7B 3.0200 H10A···C10 ^{viii} 2.9900 C10···H7B 3.0800 H10A···C10 ^{viii} 2.9900 C10···H7B 3.0900 H10B···C1 2.8600 C10···H7B 3.0200 H10B···C1 2.800 C10···H7B 3.0700 H10B···C1 2.9900 C10A···H7B 2.9900 H10B···C1 2.900 C10A···H7B 2.9900 H10B···H1 2.3700 H10B···C1 3.0900 H10B···H1
C5-··O62.847 (4)H5C···O62.3200C5···C5A ⁱ 3.591 (4)H5C···C62.8400C5A···C5 ⁱⁱ 3.591 (4)H5C···C10A ⁱ 2.9400C1···H10A ^{iv} 2.8800H5C···C10A ⁱ 3.0800C1···H10B2.8600H7B···C102.6400C3···H21B ^v 3.0900H7B···C10A3.0200C3···H21B ^v 3.0900H7B···C10A2.2200C4···H5B ⁱ 3.0600H7B···C10A2.2800C4···H5B ⁱ 3.0600H8A···C3 ^{ix} 2.9800C4···H5B ⁱ 3.0600H8A···C3 ^{ix} 2.9800C4···H5B ⁱ 3.0600H8A···C3 ^{ix} 2.9600C5···H42.9000H8B···C5A2.9600C5A···H8B2.9600H8B···C6 ⁱ 2.8800C5A···H5C ⁱⁱ 2.9400H9A···H10A ^{iv} 2.5900C6···H5C2.8400H9A···H10A ^{iv} 2.5900C1···H13.0700H10A···C72.7800C10···H7B2.9700H10A···C10B ^{vii} 2.9900C10···H7B3.0200H10A···C10B ^{viii} 2.9900C10···H7B3.0200H10A···C10B ^{viii} 2.5900C10···H7B3.0200H10A···C10B ^{viii} 2.5900C10···H7B3.0200H10B···C12.8600C10···H7B3.0200H10B···C12.8600C10···H7B3.0200H10B···H12.4300H1···C103.0700H10B···C13.700H1···H10B2.4300H21····H12.3700H1····L103.0700H10B···C13.0900
$C5C5A^i$ $3.591 (4)$ $H5CC6$ 2.8400 $C5AC5^{ii}$ 2.9400 $C1H10A^{iv}$ 2.8800 $H5CC10A^i$ 3.0800 $C1H10B$ 2.8600 $H7BC10$ 2.6400 $C3H21B^v$ 3.0900 $H7BC10A$ 3.0200 $C3H21B^v$ 2.9800 $H7BC10A$ 2.2200 $C4H5B^i$ 3.0600 $H7BO6^{ii}$ 2.8100 $C4H5B^i$ 3.0600 $H8AC3^{iv}$ 2.9800 $C4H5B^i$ 3.0600 $H8AC3^{iv}$ 2.9000 $C4H5B^i$ 3.0600 $H8AC3^{iv}$ 2.9000 $C5H4$ 2.9000 $H8BC5A$ 2.9600 $C5AH5C^{ii}$ 2.9400 $H9AC10^{iv}$ 2.9700 $C5AH5C^{ii}$ 2.9400 $H9AC10^{iv}$ 2.9700 $C6H5C$ 2.8400 $H9AC10^{iv}$ 2.9700 $C10H1$ 3.0700 $H10AC1^{vii}$ 2.8800 $C10H7B$ 2.6400 $H10AC1^{vii}$ 2.9900 $C10H7B$ 3.0200 $H10AC1^{vii}$ 2.9900 $C10H7B$ 3.0200 $H10AC1^{vii}$ 2.9900 $C10AH5C^{ii}$ 3.0800 $H10BC1$ 2.8600 $C10AH5C^{ii}$ 2.9900 $H10BC1$ 2.9900 $C10AH7B$ 2.9900 $H10BC1$ 2.9900 $C10AH7B$ 2.3700 $H10BC1$ 2.9700 $C10AH7B$ 2.3900 $H10BC1$ 2.9900 $C10AH7B$ 2.9900 $H10BC1$ <t< td=""></t<>
$CSACS^{ii}$ $3.591 (4)$ $HSCCSA^{i}$ 2.9400 $C1H10A^{iv}$ 2.8800 $H5CC10A^{i}$ 3.0800 $C1H10B$ 2.8600 $H7BC10$ 2.6400 $C3H21B^{v}$ 3.0900 $H7BC10A$ 3.0200 $C3H21B^{vi}$ 2.9800 $H7BC10A$ 2.2200 $C4H5B^{i}$ 2.9800 $H7BC1^{ii}$ 2.8100 $C4H5B^{i}$ 3.0600 $H7BC3^{ii}X$ 2.9800 $C4H5B^{i}$ 3.0600 $H8AC3^{ii}X$ 2.9800 $C4AH5B^{i}$ 2.9000 $H8BC5A$ 2.9600 $C5AH5C^{ii}$ 2.9400 $H8BC6A^{i}$ 2.9600 $C5AH5C^{ii}$ 2.9400 $H9AC10^{iv}$ 2.9700 $C6H5C$ 2.8400 $H9AC10^{iv}$ 2.9700 $C10H10A$ 2.7800 $H10AC1V^{ii}$ 2.8800 $C10H7B$ 2.6400 $H10AC10^{vii}$ 2.9900 $C10H7B$ 2.9700 $H10AC108^{vii}$ 2.9900 $C10H7B$ 2.9700 $H10AC108^{vii}$ 2.9900 $C10H7B$ 3.0200 $H10BC1$ 2.8600 $C10AH5C^{ii}$ 3.0800 $H10BC1$ 2.8600 $C10AH7B$ 2.9900 $H10BC1$ 2.9900 <
$C1 \cdots H10A^{iv}$ 2.8800 $H5C \cdots C10A^{i}$ 3.0800 $C1 \cdots H10B$ 2.8600 $H7B \cdots C10$ 2.6400 $C3 \cdots H21B^{v}$ 3.0900 $H7B \cdots C10A$ 3.0200 $C3 \cdots H3A^{vi}$ 2.9800 $H7B \cdots H10A$ 2.2200 $C4 \cdots H5B^{i}$ 3.0600 $H7B \cdots O6^{ii}$ 2.8100 $C4 \cdots H5B^{i}$ 2.7500 $H8A \cdots C3^{ix}$ 2.9800 $C4 \cdots H5B^{i}$ 3.0600 $H8A \cdots C3^{ix}$ 2.9600 $C4 \cdots H5B^{i}$ 3.0600 $H8A \cdots H3^{ix}$ 2.3400 $C5 \cdots H4$ 2.9000 $H8B \cdots C5A$ 2.9600 $C5A \cdots H5C^{ii}$ 2.9400 $H9A \cdots C10^{iv}$ 2.9700 $C6 \cdots H5C$ 2.8400 $H9A \cdots C10^{iv}$ 2.9700 $C6 \cdots H5C$ 2.8400 $H10A \cdots C7$ 2.7800 $C10 \cdots H1$ 3.0700 $H10A \cdots C1^{vii}$ 2.9900 $C10 \cdots H7B$ 2.6400 $H10A \cdots C1^{vii}$ 2.9900 $C10A \cdots H7B$ 3.0200 $H10A \cdots C10^{ivii}$ 2.9900 $C10A \cdots H7B$ 3.0200 $H10A \cdots C10^{ivii}$ 2.9900 $C10A \cdots H7B$ 3.0700 $H10B \cdots C1$ 2.8600 $C10A \cdots H7B$ 2.9900 $H10B \cdots H1$ 2.4300 $H1 \cdots H10A^{iv}$ 2.9900 $H10B \cdots H1$ 2.4300 $H1 \cdots H10B$ 2.4300 $H10B \cdots C1^{viii}$ 2.5900 $H1 \cdots H10B$ 2.4300 $H10B \cdots C1^{viii}$ 2.5900 $H1 \cdots H10B$ 2.4300 $H10B \cdots H1$ 2.4300 $H1 \cdots H10B$ 2.4300 $H10B \cdots C1^{viii}$ 3.0900 $H1 $
C1···H10B2.8600H7B···C102.6400C3···H21B ^v 3.0900H7B···C10A3.0200C3···H8A ^{vi} 2.9800H7B···H10A2.2200C4···H5B ⁱ 3.0600H7B···O6 ⁱⁱ 2.8100C4···H5A2.7500H8A···C3 ^{ix} 2.9800C4···H5B ⁱ 3.0600H8A···H3 ^{ix} 2.3400C5···H42.9000H8B···C5A2.9600C5···H42.9000H8B···C5A2.9600C5A···H8B2.9600H9A···C10 ^{iv} 2.9700C6···H5C2.8400H9A···C10 ^{iv} 2.9700C6···H5C2.8400H0A···C72.7800C10···H13.0700H10A···C72.7800C10···H7B2.6400H10A···C10 ^{vii} 2.8800C10···H7B3.0200H10A···C10 ^{viii} 2.9900C10A···H5C ⁱⁱ 3.0800H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H7B3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···C12.8000C10A···H5C ⁱⁱⁱ 3.0700H10B···H12.4300H1····L10A2.3700H21A···H12.3700H1····L10A2.3700H21B···C3 ^x 3.0900
C3H21B ^v 3.0900 H7BC10A 3.0200 C3H8A ^{vi} 2.9800 H7BH10A 2.2200 C4H5B ⁱ 3.0600 H7BO6 ⁱⁱ 2.8100 C4H5B ⁱ 2.7500 H8AC3 ^{ix} 2.9800 C4H5B ⁱ 3.0600 H8AC3 ^{ix} 2.9400 C5H4 2.9000 H8BC5A 2.9600 C5AH8B 2.9600 H9AC10 ^{iv} 2.9700 C5AH5C ⁱⁱ 2.9400 H9AC10 ^{iv} 2.9700 C6H5C 2.8400 H9AH10A ^{iv} 2.5900 C7H10A 2.7800 H10AC7 2.7800 C10H1 3.0700 H10AC10 ^{vii} 2.8800 C10H7B 2.6400 H10AC10 ^{viii} 2.8800 C10H7B 3.0200 H10AC10 ^{viii} 2.8800 C10AH7B 3.0200 H10AC10 ^{viii} 2.9900 C10AH5C ⁱⁱⁱ 3.0800 H10BC1 2.8600 C10AH5C ⁱⁱⁱ 3.0700 H10BC1 2.8001 C10AH5C ⁱⁱⁱ 3.0700
$C3 \cdots H8A^{vi}$ 2.9800H7B \cdots H10A2.2200 $C4 \cdots H5B^i$ 3.0600H7B \cdots O6^{ii}2.8100 $C4 \cdots H5A$ 2.7500H8A $\cdots C3^{ix}$ 2.9800 $C4 \cdots H5B^i$ 3.0600H8A $\cdots H3^{ix}$ 2.3400 $C5 \cdots H4$ 2.9000H8B $\cdots C5A$ 2.9600 $C5A \cdots H8B$ 2.9600H8B $\cdots C6^i$ 2.8800 $C5A \cdots H5C^{ii}$ 2.9400H9A $\cdots C10^{iv}$ 2.9700 $C6 \cdots H5C$ 2.8400H9A $\cdots C10^{iv}$ 2.9700 $C6 \cdots H5C$ 2.8400H10A $\cdots C7$ 2.7800 $C10 \cdots H1$ 3.0700H10A $\cdots C7$ 2.7800 $C10 \cdots H7B$ 2.6400H10A $\cdots C10^{vii}$ 2.9900 $C10 \cdots H7B$ 3.0200H10A $\cdots C108^{viii}$ 2.9900 $C10A \cdots H7B$ 3.0800H10B $\cdots C1$ 2.8600 $C10B \cdots H10A^{iv}$ 2.9900H10B $\cdots H1$ 2.4300 $H1 \cdots H10B$ 2.4300H21A $\cdots H1$ 2.3700 $H1 \cdots H10B$ 2.4300H21A $\cdots H1$ 2.3700 $H1 \cdots H10B$ 2.3700H21B $\cdots C3^{x}$ 3.0900 $C4A \rightarrow N = C5$ 123.9 (2)C4A $- C4 - H4$ 121.00
C4H5B ⁱ 3.0600 H7BO6 ⁱⁱ 2.8100 C4H5B ⁱ 2.7500 H8AC3 ^{ix} 2.9800 C4AH5B ⁱ 3.0600 H8AH3 ^{ix} 2.3400 C5H4 2.9000 H8BC5A 2.9600 C5AH8B 2.9600 H8BO6 ⁱ 2.8800 C5AH5C ⁱⁱ 2.9400 H9AC10 ^{iv} 2.9700 C6H5C 2.8400 H9AH10A ^{iv} 2.5900 C7H10A 2.7800 H10AC7 2.7800 C10H1 3.0700 H10AC1 ^{vii} 2.8800 C10H7B 2.6400 H10AC1 ^{vii} 2.8800 C10H7B 3.0200 H10AC1 ^{vii} 2.8800 C10H7B 3.0200 H10AH7B 2.9900 C10AH7B 3.0800 H10BC1 2.8600 C10BH10A ^{iv} 2.9900 H10BC1 2.8600 C10AH7B 3.0700 H10BC1 2.8500 C10AH7C ⁱⁱ 3.0700 H10BC1 2.900 H1C10 3.0700 H10BC1
$C4 \cdots H5A$ 2.7500 $H8A \cdots C3^{ix}$ 2.9800 $C4A \cdots H5B^i$ 3.0600 $H8A \cdots H3^{ix}$ 2.3400 $C5 \cdots H4$ 2.9000 $H8B \cdots C5A$ 2.9600 $C5A \cdots H8B$ 2.9600 $H8B \cdots C6^i$ 2.8800 $C5A \cdots H5C^{ii}$ 2.9400 $H9A \cdots C10^{iv}$ 2.9700 $C6 \cdots H5C$ 2.8400 $H9A \cdots H10A^{iv}$ 2.5900 $C7 \cdots H10A$ 2.7800 $H10A \cdots C7$ 2.7800 $C10 \cdots H1$ 3.0700 $H10A \cdots C10^{vii}$ 2.9200 $C10 \cdots H7B$ 2.6400 $H10A \cdots C108^{vii}$ 2.9900 $C10A \cdots H7B$ 3.0200 $H10A \cdots H7B$ 2.5900 $C10A \cdots H5C^{ii}$ 3.0800 $H10B \cdots C1$ 2.8600 $C10B \cdots H10A^{iv}$ 2.9900 $H10B \cdots H1$ 2.4300 $H1 \cdots H10B$ 2.4300 $H21A \cdots H1$ 2.3700 $H1 \cdots H10B$ 2.3700 $H21B \cdots C3^{x}$ 3.0900 $C4A - N5 - C5$ $123.9(2)$ $C4A - C4 - H4$ $T10A \cdots T10^{vii}$
C4A.··H5B ⁱ 3.0600 H8A.··H3 ^{ix} 2.3400 C5··H4 2.9000 H8B···C5A 2.9600 C5A··H8B 2.9600 H8B···C6 ⁱ 2.8800 C5A···H5C ⁱⁱ 2.9400 H9A···C10 ^{iv} 2.9700 C6···H5C 2.8400 H9A···C10 ^{iv} 2.9700 C6···H5C 2.8400 H9A···H10A ^{iv} 2.5900 C1···H1 3.0700 H10A···C7 2.7800 C10···H1 3.0700 H10A···C10 ^{vii} 2.8400 C10···H7B 2.6400 H10A···C10 ^{viii} 2.8800 C10···H7B 3.0200 H10A···C10 ^{viii} 2.9900 C10A···H7B 3.0200 H10A···H9A ^{viii} 2.5900 C10A···H5C ⁱⁱ 3.0800 H10B···C1 2.8600 C10B···H10A ^{iv} 2.9900 H10B···H1 2.4300 H1···C10 3.0700 H10B···H1 2.4300 H1···H10B 2.4300 H21A···H1 2.3700 H1···H10B 2.3700 H21B···C3 ^x 3.0900 C4AN5C5 1
Chir Hild2,9000H8B ···C5A2,9600C5A···H42,9600H8B···C6 ⁱ 2,8800C5A···H8B2,9600H9A···C10 ^{iv} 2,9700C6···H5C2,8400H9A···H10A ^{iv} 2,5900C7···H10A2,7800H10A···C72,7800C10···H13,0700H10A···C72,7800C10···H7B2,6400H10A···C10B ^{vii} 2,8800C10···H9A ^{vii} 2,9700H10A···C10B ^{viii} 2,9900C10···H9A ^{viii} 2,9700H10A···C10B ^{viii} 2,9900C10A···H7B3,0200H10B···C12,8600C10B···H10A ^{iv} 2,9900H10B···C12,8600C10B···H10A ^{iv} 2,9900H10B···H12,4300H1···C103,0700H10B···C1 ^{viii} 2,5900H1···H10B2,4300H21A···H12,3700H1···H21A2,3700H21B···C3 ^x 3,0900C4AN5C5123.9 (2)C4AC4H4121.00
C5A···H8B 2.9600 H8B···O6 ⁱ 2.8800 C5A···H5C ⁱⁱ 2.9400 H9A···C10 ^{iv} 2.9700 C6···H5C 2.8400 H9A···H10A ^{iv} 2.5900 C7···H10A 2.7800 H10A···C7 2.7800 C10···H1 3.0700 H10A···C1 ^{vii} 2.8800 C10···H7B 2.6400 H10A···C1 ^{vii} 2.8800 C10···H9A ^{vii} 2.9700 H10A···C10B ^{viii} 2.9900 C10···H9A ^{viii} 3.0200 H10A···C10B ^{viii} 2.9900 C10A···H7B 3.0200 H10B···C1 2.8600 C10B···H10A ^{iv} 2.9900 H10B···C1 2.300 H1···C10 3.0700 H10B···C1 2.5900 H1···H10B 2.4300 H21A···H1 2.3700 H1···H21A 2.3700 H21B···C3 ^x 3.0900 C4AN5C5 123.9 (2) C4AC4H4 121.00
C5A.··H5C ⁱⁱ 2.9400H9A.··C10 ^{iv} 2.9700C6···H5C2.8400H9A···H10A ^{iv} 2.5900C7···H10A2.7800H10A···C72.7800C10···H13.0700H10A···C72.7800C10···H7B2.6400H10A···C1 ^{vii} 2.8800C10···H7B2.9700H10A···C10B ^{vii} 2.9900C10···H7B3.0200H10A···C10B ^{vii} 2.9900C10A···H7B3.0200H10A···H9A ^{vii} 2.5900C10A···H5C ⁱⁱ 3.0800H10B···C12.8600C10B···H10A ^{iv} 2.9900H10B···H12.4300H1···C103.0700H10B···O6 ^{viii} 2.5900H1···H10B2.4300H21A···H12.3700H1···H21A2.3700H21B···C3 ^x 3.0900C4AN5C5123.9 (2)C4AC4H4121.00
C6···H5C2.8400H9A···H10A ^{iv} 2.5900C7···H10A2.7800H10A···C72.7800C10···H13.0700H10A···C72.7800C10···H7B2.6400H10A···C1 ^{vii} 2.8800C10···H9A ^{vii} 2.9700H10A···C10B ^{vii} 2.9900C10···H7B3.0200H10A···C10B ^{vii} 2.9900C10A···H7B3.0200H10A···H9A ^{vii} 2.5900C10A···H5C ⁱⁱ 3.0800H10B···C12.8600C10B···H10A ^{iv} 2.9900H10B···H12.4300H1···C103.0700H10B···C42.3700H1···H10B2.4300H21A···H12.3700H1···H21A2.3700H21B···C3 ^x 3.0900C4AN5C5123.9 (2)C4AC4H4121.00
C7…H10A2.7800H10A…C72.7800C10…H13.0700H10A…H7B2.2200C10…H7B2.6400H10A…C1 ^{vii} 2.8800C10…H9A ^{vii} 2.9700H10A…C10B ^{vii} 2.9900C10A…H7B3.0200H10A…H9A ^{vii} 2.5900C10A…H5C ⁱⁱ 3.0800H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10…H13.0700H10A…H7B2.2200C10…H7B2.6400H10A…C1 ^{vii} 2.8800C10…H9A ^{vii} 2.9700H10A…C10B ^{vii} 2.9900C10A…H7B3.0200H10A…H9A ^{vii} 2.5900C10A…H5C ⁱⁱ 3.0800H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10…H7B2.6400 $H10A…C1^{vii}$ 2.8800C10…H9A ^{vii} 2.9700 $H10A…C10B^{vii}$ 2.9900C10A…H7B3.0200 $H10A…H9A^{vii}$ 2.5900C10A…H5C ⁱⁱ 3.0800 $H10B…C1$ 2.8600C10B…H10A ^{iv} 2.9900 $H10B…H1$ 2.4300H1…C103.0700 $H10B…O6^{viii}$ 2.5900H1…H10B2.4300 $H21A…H1$ 2.3700H1…H21A2.3700 $H21B…C3^x$ 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10…H9A ^{vii} 2.9700H10A…C10B ^{vii} 2.9900C10A…H7B3.0200H10A…H9A ^{vii} 2.5900C10A…H5C ⁱⁱ 3.0800H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10A…H7B3.0200H10A…H9A ^{vii} 2.5900C10A…H5C ⁱⁱ 3.0800H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10A…H5C ⁱⁱ 3.0800H10B…C12.8600C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C10B…H10A ^{iv} 2.9900H10B…H12.4300H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
H1…C103.0700H10B…O6 ^{viii} 2.5900H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3 ^x 3.0900C4A—N5—C5123.9 (2)C4A—C4—H4121.00
H1…H10B2.4300H21A…H12.3700H1…H21A2.3700H21B…C3x3.0900C4A_N5_C5123.9 (2)C4A_C4_H4121.00
H1…H21A 2.3700 H21B…C3 ^x 3.0900 C4A—N5—C5 123.9 (2) C4A—C4—H4 121.00
C4A—N5—C5 123.9 (2) C4A—C4—H4 121.00
C4A—N5—C5A 108.33 (17) N5—C5—H5A 109.00
C5—N5—C5A 127.7 (2) N5—C5—H5B 109.00
C2—C1—C10B 119.6 (2) N5—C5—H5C 109.00
C1—C2—C3 119.2 (2) H5A—C5—H5B 109.00
C1—C2—C21 121.1 (3) H5A—C5—H5C 109.00
C3—C2—C21 119.7 (2) H5B—C5—H5C 109.00
C2—C3—C4 122.9 (2) C6—C7—H7A 109.00
C3—C4—C4A 117.8 (2) C6—C7—H7B 109.00
N5-C4A-C4 130.6 (2) C8-C7-H7A 109.00
N5-C4A-C10B 108.85 (18) C8-C7-H7B 109.00
C4—C4A—C10B 120.6 (2) H7A—C7—H7B 108.00
N5—C5A—C6 123.79 (17) C7—C8—H8A 108.00
N5-C5A-C10A 109.37 (17) C7-C8-H8B 108.00
C6-C5A-C10A 126.84 (18) C9-C8-H8A 108.00
O6—C6—C5A 121.8 (2) C9—C8—H8B 108.00

supplementary materials

O6—C6—C7	120.1 (2)	Н8А—С8—Н8В	107.00
C5A—C6—C7	118.13 (18)	С8—С9—Н9А	108.00
C6—C7—C8	113.1 (3)	С8—С9—Н9В	108.00
С7—С8—С9	115.5 (3)	С10—С9—Н9А	108.00
C8—C9—C10	115.6 (2)	С10—С9—Н9В	108.00
C9—C10—C10A	115.7 (2)	Н9А—С9—Н9В	107.00
C5A—C10A—C10	127.70 (17)	C9—C10—H10A	108.00
C5A—C10A—C10B	106.53 (16)	C9—C10—H10B	108.00
C10-C10A-C10B	125.70 (16)	C10A—C10—H10A	108.00
C1—C10B—C4A	119.95 (18)	C10A—C10—H10B	108.00
C1-C10B-C10A	133.12 (19)	H10A-C10-H10B	107.00
C4A—C10B—C10A	106.92 (17)	C2—C21—H21A	109.00
C2—C1—H1	120.00	C2—C21—H21B	109.00
C10B—C1—H1	120.00	C2—C21—H21C	109.00
С2—С3—Н3	119.00	H21A—C21—H21B	109.00
С4—С3—Н3	119.00	H21A—C21—H21C	110.00
С3—С4—Н4	121.00	H21B—C21—H21C	109.00
C5—N5—C4A—C4	-5.0 (4)	C4—C4A—C10B—C10A	-178.4 (2)
C5-N5-C4A-C10B	176.1 (3)	N5—C5A—C6—O6	-3.8 (4)
C5A—N5—C4A—C4	178.6 (3)	N5-C5A-C6-C7	175.6 (2)
C5A—N5—C4A—C10B	-0.4 (3)	C10A—C5A—C6—O6	176.5 (3)
C4A—N5—C5A—C6	-179.7 (2)	C10A—C5A—C6—C7	-4.1 (4)
C4A—N5—C5A—C10A	0.0 (3)	N5-C5A-C10A-C10	177.3 (2)
C5—N5—C5A—C6	4.0 (4)	N5-C5A-C10A-C10B	0.4 (3)
C5-N5-C5A-C10A	-176.4 (3)	C6—C5A—C10A—C10	-3.1 (4)
C10B—C1—C2—C3	0.5 (4)	C6—C5A—C10A—C10B	-179.9 (2)
C10B—C1—C2—C21	-178.4 (3)	O6—C6—C7—C8	126.1 (3)
C2-C1-C10B-C4A	-0.9 (3)	C5A—C6—C7—C8	-53.3 (3)
C2-C1-C10B-C10A	177.5 (3)	C6—C7—C8—C9	86.9 (3)
C1—C2—C3—C4	0.5 (5)	C7—C8—C9—C10	-25.7 (4)
C21—C2—C3—C4	179.5 (3)	C8—C9—C10—C10A	-48.2 (3)
C2—C3—C4—C4A	-1.0 (5)	C9—C10—C10A—C5A	57.1 (3)
C3—C4—C4A—N5	-178.3 (3)	C9—C10—C10A—C10B	-126.6 (2)
C3—C4—C4A—C10B	0.6 (4)	C5A-C10A-C10B-C1	-179.3 (2)
N5-C4A-C10B-C1	179.5 (2)	C5A-C10A-C10B-C4A	-0.7 (3)
N5-C4A-C10B-C10A	0.6 (3)	C10-C10A-C10B-C1	3.9 (4)
C4—C4A—C10B—C1	0.4 (3)	C10-C10A-C10B-C4A	-177.5 (2)

Symmetry codes: (i) -x+1/2, y, z-1/2; (ii) -x+1/2, y, z+1/2; (iii) x-1/2, -y+1, z; (iv) -x+1, -y+1, z-1/2; (v) -x+1, -y+2, z-1/2; (vi) x, y+1, z; (vii) -x+1, -y+1, z+1/2; (viii) x+1/2, -y+1, z; (ix) x, y-1, z; (x) -x+1, -y+2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C10—H10B···O6 ^{viii}	0.97	2.59	3.550 (3)	168
Symmetry codes: (viii) $x+1/2$, $-y+1$, z .				

Fig. 2

